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Abstract

Several algorithms are presented for solving linear least squares

problems; the basic tool is orthogonalization techniques. A highly

accurate algorithm is presented for solving least squares probl.,-mr. with

linear inequality constraints. A method is also given for findirg t!ie

least squares solution when there is a quadratic conctraint on the

solution.
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0. Introduction

One of the most common problems in any computation center is that of

finding linear least squares solutions. These problems arise in a variety

of areas and in a variety of contexts. For instance, the data may be

arriving seqentially from a source and there :ay be some constraint on

the solution. Linear least squares problems are particularly difficult

to solve because they frequently involve large quantities of data, and

they are ill-conditioned by their very nature.

In this paper, we shall present several numerical algorithms for

solving linear least squares problems in a highly accurate manner. In

addition, we shall give an algorithm for solving linear least squares

problem with linear inequality constraints.

1. Linear least squares

Let A be a given mxn real matrix of rank r and b a given

vector. We wish to deterrine • such thatM n
.. m n ,

(b, - ýa..x.j min.

or using matrix notation

I. flb-A~xj12 = min. (.1)

If m > n and r < n , then there is no unique solution. Under these17 conditions, we require amongst those vectors x which satisfy (1l.I) tiat

Smn2 = .

SFor r = n ,x satisfies the normal equatioUs

--=A ().2)A T 3
Unfortunately, the matrix A TA is frequently ill-conditiorfd and

influenced greatly by roundoff errors. The following example illustrates

i this well. Suppose

i1



-- ] 1 1 1l
0 0

A = 0 E 0 0

S0 0 E 0

L0 0 0 E

- which is clearly of' rank 4 . Then

14 1I l+€2 2 1 1

ATA 1 1 1+E2

1 1 1+FiL
T 2 2 2 2I and the eiCenvalies of A A are 14E ,E E E Assume thait the

cl--ments of A TA are computed using double precision arithmetic, and then

runded to single precision accuracy. Now let I be the largest number

en the cŽmnute- such that fZ(l+1) = 1 where fl(...) indicates the

T :looting~ point computation. Then if E <

+ fAfA) (A'Ai I
a matrix of rank cne, and consequently, no matter how accurate the Il:iear

T eqTaticn sol'-er 1t will be impossible to solve the normal equations (1.2).
7 ONGIEY [196,71 has g;iven exaT-Iples in which the solu' ion of the normal

equatioi-s leads to almost no digits of' accuracy of the least squares problem.t

2. A matrix decomposition

w lyd = yTy)i/2 so that jjQrl = Iy when Q is an orthog,)nal

matrix, .. , : I . Thus

I •i 1•-AxI,l =ii-Q•xtl2

wi.,-rc ,L and 0 is an orthogonal matrix. We choose Q so that

QA u R L r-~ 21

0 (m-n)xn



where R is an upper triangular =strix . Let

' R rll r1  . . ln

S l ( r2 _ 2 • . r2n
R

L nn j
S~then

2 2
+ n+i + n+2 + . m

Thu$ jIb-Ax II ( is minimized when

r 2 rl2x2 + ... + r nX =xcI
(c nnn n)

+rC2 + 2 + ... + C~~ = 2

r x -- C

Si.e., R, = Z, where

S= (Cl, C2 ,...,cn) I

and

l 2b-A31 c++ + .. 2  (2)
2 Cn+l n+2+""+ .

E Then

P = fR:o [.R:o] - R R

T (2.3)
= [QA) [QA] = ATA

and thus RPR is simply the Cholesky decomposition of ATA
ThIrp -tr- a niuber at ways to achieve the decomposition of (2.1);

[ e.g. on- could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A . A very effective method to realize

!
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the decomposition (2.1) is via Householder transformations. A matrix P

is said to be a Householder transformation if

P = I -2uuT , uTu= .

N(te that 1) p pT and 2) pp I - 2uu1 - 2uUT + 4uuTuu =T so

thlat P is a symmetric, orthogonal transformation.
1e A(1) A n e (2) A() Anl

Let A = A and let A , ,..., be defined as tollows:

A(k+i) P(k)A() (k = 1,2,...,n)

wiere p( I -1 ('W '( T w(k)T w(k) = 1 . The matrix ) is

choen ,; so that a (k+i) a (k+l) .... a(k+l) = 0 Thus after kk+l,k k+2,k n,k
t r-ns fornr t ions

a1 (2) a (2) .* a (2)
111 12 ln
0 a(3) a(3)

2 2  '.2n

a(k+l) (k+n)I
A/Il kk " akn )

a(k+l)

0 ak+l,k+l

0

0 0 a (k+l " a+1)]

!-t* t Ja ak+1)l (ai (k~) 2 1/2 since P(k) is an orthogonal

k ik AM

trans fornat ion. The details of the computation are given in BUSINGER and

(IOLUF [19'51 9nd GOLUB [1965]. The Householder transformations have been used

in. -a hi;-'hy elfe'(ctive manner by KALFON et al. 11968) in the implementation

h radicnt method.

tJ

JR -A(n+l)

0k
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F and
P. ( n) p(,-l) ... p(1

I

although one need not compute Q explicitly. nh % ;l':bur of i:;ul,!plic'itions

required to produce R is roughly rni-(n2 /1 ) wl.•eres VpA rxinote],

MaC /,a multiplications are required to :'orm ho ncrt:nl e2cyal ions

11
The: practical procedure

It is known that the Cholesky method for solv io- syst .2ms twi'

r is rnunerically stable even if no interchanges of rows and ýol]imns arc

I- performed. Since we are in effect performing a Cholesky decomposition

Of ATA no interchanges of thc columns oi' A arc needed in mort

-situations. However, numericsa exyeriments have indicated that the

accuracy is slightly improved by the interchange strategies outlined

F below, and consequently, in order to ensure the utmost accuracy one

should choose the columns of A by some strategy. In what follows,

we shall refer to the matrix A even if some of the columns hove
been interchanged.

FOne possibility is to choose at the kth stage the columns of

A(k) which will maximize lak(k+l)l This is equivalent to searching for
kk Tthe maximum diagonal element in the Cholesky decomposition of A A

Let

(k) = (k),2Si Z(ai,j) for j = k,k+l,.,
j=k

en~) since ak+l)I =(k))1/2+,lone should choose that column for whic,

Sk) s -ximized. After A (k~ has been computed, one can compute

s )-is follows:[ sj
() (k-l))2S , = k) - (ak,j (j = k+l,...,n)

[ since the orthogonal transformations leave the column lengths invarinnt.

Naturally, the s s must be interchanged if the columns of A are

interchn nied.

[5



The above strategy is useful in determining the rank of a matrix.

If the rank of A is r and the arithmetic is performed exactly, then

after r transformations

A(r+l) _[ xr . . (. )r]

T :and

s .= 0 for = r+l,...,n

which implies N = 0 . In most situations, however, where rounded

arithmetic is used 1INII = £ . It is not easy to determine bounds on e

when the rank of A is unknown.

T.e stratsey described above is most appropriate when one has a

sequence o vectors blb2,...lbp for which one desires a least squares

estimate. In many problems, there is but one vector b and one wishes

to express it in as few columns of A as possible. Or more precisely,

one wishes to determine the k indices such that
I" r k

|(b. - a.. mc. Y=rin.1i=] ' L-IiD U]

-Y' annot solve this problem, but we shall show how to choose index k

whie tl'c first k-i indices are g]iven so that the sum of squares of

residuals is maxLmally reduced. This is the stage-wice regressioci problem.

We define

(2) (2)
rl 11r1k 11 a1k

'i ) r 2 2 •. r2k 22 . 2k

r (k+1)i kk Ua kk

Tt cn c (k+i) p(k) (k) o (k) (k-l) 7(k)I •' =band c = C Now R where

is t:.e least squares estimate based on (k-i) columns of A and

0(k ) (k) (k)
- C,( k ck-1 ) Thus by (2.2)



I1C(k+l) - -(k+1)(k)
112 (k+1)

j=k+l

m (c(k+l) )2 (k+l)2

k- j Ok
j=k

m (ok))2 _ (k+l))2

j=k - k

since length is preserved under an orthogonal transformation. Consequently,

we wish to choose that column of A (k) which will maximize c,(k+l)I

Let

ofA(k) (k) 2((i)(k)

j (k [i=aj (ki ) for j = k+l,...,n

The sice ,(k~lJ =J(F a(k)c(k).. (k),l one should choose that

column of A(k) for which (t (k) )2/s(k) is maximized. After P(k) is
aplidto (k) (k)applied to A one can adjust t as follows:

t (k+l) .(k) - a(k+l)c (k+l)
3 i kj k

In many statistical applications, if (j ) /s( is sufficiently small,

then no further transformations are performed.

4. Statistical calculations

In many statistical calculations, it is necessary to compute certain

auxiliary information associated with ATA . These can readily be obtained

from the orthogonal decomposition. Thus

det (A TA) = x r x ... x r )2
r11  r22  nn

Since

T TT 1 ~-lI-T
ATA R (ATA)- = R R

The inverse of R can be readily obtained since R is an upper triangular

matrix. It is possible to calculate (ATA)"I directly from R . Let

S - • q l i m 7



" (ATP.)l = X = I (XX2, .. xn •

Then from the relationship

Sand by notinC that (R- 1,/ri , it is possible to compute xqx ,...,x

Tl- number of operations is roughly the same as in the first method but

ncrc accurate bounds may be established for this method provided all inner

prcducts are accu~mulated to double precision.

In some applications, the original set of observations are augmented

- by an additional set of observations. In this case, it is not n'ecessary

.c begýin the calculation from the beginning again if the method of

orthogonalization is used. Let R correspond to the original data

8 after it has been reduced by orthogonal transformations and let A2 ,b 2

correspond to the additional observations. Then the up-dated least squares

1 solution can be obtained directly from

AA= , b= L.
- R-1

This follows immediately from the fact ti it the product of two orthogonal

transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments

frequently advanced for using normal equations is that only n(n+l)/2

memory locations are required. By partitioning the matrix A by rows,

however, then similarly only n(n+l)/2 locations are needed when the

rmethiod cf orthogonalization is used.

In certain statistical applications, it is desirable to remove a row

,tie ratrix A after the least squares solution has been obtained. This

I can be done in a very simple manner. Consider the matrix

A~ ... and d

wh.ere a is the row of A which one wishes to remove, • is the corresponding

element of b , and i = /-1 . Note that1!
!



F

ST s WR -~ aTa ATA 07a

cos 9 0 . . . . sin Q

0 1

Sn+ 0

sin 9 0 -cos I

s(l) s and S(2) s(l)= • = ijn+1

We choose cos 0 so that 1S(2) = 0 Thus

1, l, 1r( ar.( , 2 -a2
11(rl111)

S:2) 1, (rllrlj-Q laj )/•(rll -a ) j =2,3,...,n

3 [(2). i2 2~-j,),('-''n+l,j :z°ll-jl)/rlCl ,,.,

Note no complex arithmetic is really necessary. The process is continued

as follows:

Let k n+l

1

Z = ... Cossi Ok

kn+ sl k (4.)

k . 1 .

i "sin @k "-cog Q n+lt!k

i9



Then

-" S(k+l) nz S(k)k 1,..n
= Zk k = ,2,...,n ,

"and cos @k is determined so that (s(k+l)3 k,n+l = 0 Thus roughly 3n2

multiplications and divisions and n square roots are required to form the

new R

Suppose it is desirable to add an additional variable so that the

matrix A is augmented by a vectcr g (say). The first n columns of

R(n) are unchanged. Now one computes

h = p(n) . (2)p(l) g

From h one can compute P(n+l) and apply it to P(n) .. p(P)b . This

technique is also useful when an auxiliary serial storage (e.g. magnetic

tape) is used.

It is also possible to drop one of the variables in a simple fashion

after B has been computed. For example, suppose we wish to drop

variable I , then

r= r12 . rln

r 22

nnr nx(n-l)

.By using plane rotations, similar to those given by (4.1), it is possible

to reduce R to the triangular form again.

5. Gram-Schmidt orthogonalization

In §2, it was shown that it is possible to write

QA R . (5.1)

The matrix Q is constructed as a product of Householder transformations.

10I



r From (5.1), we see that

A - QTR z PS

Twhere Pp i , S : J. Each row of S and each colunn of P is
uniquely determined up to a scalar faot-r of modulus one. In order to avoid

computing square roots, we modify the algorithms so that S is an upper

triangular matrix with ones on the diagonal, Thus Pýp = D , a diagonal

matrix. The calculation of P and S -ay be calculated in two ways.

a) Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one cclumn at a time. Let

A(k) = 1pl1p2,..,k-l1!k,...,•nlI ~'.and assume

Pi _j 0 bij di 1 l<_i,j _< k-1 .

At step k , we compute

sik- (pI._ !/di) I i < i _< k-1

k-1 2

b) Modified Gram-Schmidt Algorithm(MGSA)

Here the elements of S are computed one row at a time. We define

A (k)( (k)'.. (k)

[and assume

Pi ~j ij Pi ?IL-_1 ijf~l, ~

(k)
At step k , we take pk= ak , and compute

d .2 T ~k a ~) a)_k 1k 'k+1 < I < n.

k 11P~112 Bf Ek 1 1 -



In both procedures, Skk 1 The two procedures in the abEence of

roux.doff errors, produce the same decomposition. However, they have

completely different numericrl properties when n > 2 . If A is at all

"ill-conditioned", then using the CGSA, the computed columns of P will

soon lose their orthogonality. Consequently, one would never use the

CGSA without reorthogonalization, which greatly increases the amount of

computation. Recrthogonalization is never needed wiien using the MGSA.

A 2areful roundoff analysis is given by WJORK [1967]. RICE [1966) has

"shown experimentally that the MGSA produces excellent results.

-The MGSA has the advantages that it is relatively easy to program,

- and experimentally (cf. JORDAN [1968)), the least squares solution seems

- o be slirhtly more accurate than the Huaseholder procedure. However, it

requires roughly mn2/2 operations which is slightly more than that necessary

n Householder procedure. Furthermore, it is not as simple as the

Householder procedure to add observations, and the vectors generated by the

Househ.older procedure are more nearly orthogonal than those generated by MGSA.I
T 6. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the

least squares problem. For this purpose it is convenient to introduce the

condition number K(A) of a non-square matrix A . This is defined by

i •':~(A) = a],!9n a, max -- ,• Axll /Y mll2, =rin l~i2/I~
2 _ - - n T

sc that 2 and a are the greatest and the least eigenvaiues of A A1 nnn

From its definition it is clear that K(A) is invariant with respect to

Lnitary transformations. If R is defined as in (2.1) then

(1) (R 1 (A) n (R) n( , () (A)

while

' I I '1 = 11R1 2  and on(ý) I/ 0-1112

The cýommcnezt method of solving least squares problems is via the normal

equations

ATAx = AT-b (6.1)

12



The •aatrix ATA is square and we havy

* IK(ATA) = K (A)

This means that if A has a condition number of the order of ,1 /2 then

A TA has a condition number of order 2 and it will not be possible

using t-digit arithmetic to solve (6.1). The method of orthogonalI transformations replaces the least squares problem by the solution of
the equations Rx = 7 and r-(R) = (A) . It would therefore seýem to have

substantial advantages since we avoid working with 1 :::atrix witl condition

number K2 (A) .

We now show that this last remark is an oversimplification. To this

end, we compare the solution of the original system [A b] with that of

a perturbed system. It is convenient to assume that

Eal IIAI12 = ';2 =1

r this is not in any sense a restriction since we can make IIAJ 2  and 1lbfl2

of order unity merely by scaling by an appropriate power of two. We now

[ have

K(A) = K(R) =1-1I2 = 1/on

Consider the perturbed system

(A + EE : b + Ee) , 1IE~i2 =1Ie1[2 =i

where e is to be arbitrarily small. The solution x of the perturbed

system satisfies the equation

(A + CE)T(A + EE)x = (A + EE) T(b + Ee) (6.2)

If x is the exact solution of the original system and Q is the exact

orthogonal transformation corresponding to A we have

i[ ] Q(A + "E) -'

and

r=1•-Ax , ATr =

130

r .. ..---....



Equation (6.2) therefore becomes

(A + cE)T(A + cE) = (AT + E T)(Ax + r + Ee)

- giving

R( 3X+ +J+

;'eg]lecting c where advantageous,

(R + EF)T(R + EF)x = (R + cF)- R + E(R + EF) T  + ET r + 0(c 2 )

x = (+ cF)- Rx+ E(h + CF) f + C(RR)- r +0(c 2 )

l- -- F + ER-i f + e(-TR)-1 ETr + T (E2

1v nf~1

1 ýII_-}11 < clR-1e I + e5-1112IfII2 + EIt-1112 J tEIll 2 lin + O(C 2)
2 2 12 + 2 - 2

< CK(A)IlX112  EK(A) + K 2 (A)l11il 2  + o(E 2

2 ~
-.:e observe that the bounds include a term CK (A)jjrUj2 . It is easy to

verify by means of a 5 x 2 matrix A that this bound is realistic and

"that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in
- the use of the normal Ouations the value K

2 (A) is still relevant to some

"exrtent.
•,,hen the equations are compatible 1jr112 = 0 and the term in K 2(A)

discappears. In the non-singular linear equation case r is always null

and hence it is always K(A) rather than K 2(A) which is relevant.

Since the sensitivity of the solution depends on the condition number,

it is frequently desirable to replace thc original unknowns x by a new

vector of unknowns D- x where T) is a diagonal matrix with non-zero

diagonal elements. Thus we wish to find S for which

Illb-C ,'lL rain.

1
!



where C = AD and D 1 D-c . Let L be the set of all n x n diagonal

matrices with non-zero diagonal elements. We wish to choose D so that

K(AD) < K(AD) for all DcLn•

Let Dc) n and (D)ii = II.laill, " VAN DER SLUIS [1968] has shown that

K(AD) _</n <(AB)

Therefore in the absence of other information, it would appear that it is

V best to precondition the matrix A so that all columns of the matrix A

have equal length. In practice, one adjusts the exponents of the stored

elements of A so that the mantissa of the floating point representation

is not changed.

7. Iterative refinement for least squares problers

The iterative refinement method may be used for improving the

F! solution to linear least squares problems. Let

so that = ATb _ATA k =

i When a 1 , the vector p is simply the residual vector r . Thus

o or

1 Cy -- g

One of the standard r.ethods for solving linear equations may now be used

to solve (7.1). However, this is quite wasteful of memory space since the

dimension of the system to be solved is (rm+n) . We may simplify this

problem somewhat by noting with the aid of (2.3) that

I 15
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aI A 0 1 7A

: = [] = ,T. (7.2)T i AT 1 --T

Once an approximate solution to Cy = g has been obtained, it is

-requently possible to improve the accuracy of the approximate solution.

Let y be an approximate solution, and let v = g-Cy . Then if y = y+b ,

satisfies tne equation

C, -- v (7.3)

iqur.,'on ( c.5) can be solved approximately from the decomposition (7.2). Of

,.-cursr, it is not possible to solve precisely for b so that the process

I may b-- repeated.

V;e are now in a position to use the iterative refinument method

I (c. MOLER [1967], WILKINSON [1967]) for solving linear equations. Thus one

mit:.t proceed as follows:

I 1) Solve for x(o) using one of the orthgonalization procedures outlined

in § 2 or 5. R must be saved but it is not necessary to retain Q . Then

I 0(o) = (b.Ax(o))

I mTIe vector y (s+l) is determined from the relationship

(s+1) (s)•(s)

wliere

-r • (s) = •cy(s) _v(s) (7.4)

",This calculation is simplified by solving

ýj (s) V _(s)

I The vector v(s) must be calculated using double precision accuracy and

then rounding to single precision.

I
I1



F
3) Terminate the iteration vhen , s / (s)i is less hn,

prescribed number.

Note that the computed residual vector is an approximation to the

residual vector when the exact solution ý is known. This may differ

from the residual vector computed from the approximatt, solution to the

least squares problem.

There are three sources of error in the process: (i) computation

of the vector -s(s) , (2) solution cf the system, of equations for the
correction vector (s , and (3) addition of the correction vector to

c vecton a"

the approximation y(s) It is absolutely necessary to compute the

components of the vector v I using double precision inner products 9nd

then to round to single precision accuracy. The convergence of tne iterative

refine, it process has been discussed in detail by MOLER [19671. Generally

speaking, for a large class of matrices for k > k all components of y(S)
-0

are the correctly rounded single precision approximations to -he components

of y . There are exceptions to this, however, (of. KAHAN [19661).

Experimentally it has been observed, in most instances, that if

S115(0)11, / 11Y(°oS1 _< 2-P where

= max Jyi1

l<i<n

then k > [t/p] . We shall return to the subject of iterative refinement

when we discuss the solution of linear jeast squares problem with linear

constraints.

A variant of the above procedure has been analyzed by BJ6RCK [1967b),

[[9681, and he has also given an ADGOL procedure. This has proved to be

"a very effective method for obtaining highly accurate solutions to linear

,, least squares problems.

8. Least squares problems with constraints

Frequently, one wishes to determine~x so that Jib-Akl12  is minimized

subject to the condition that Gk = h where G is a pxn matrix of rank p

Oine can, of course, eliminate p of the columns of A by Gaussian elimination

after a pxp non-singular submatrix of G has been determined and then solve

17
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I the resulting normal equations. This,, unfortunately, would not be a numerically

stable scheme since no row interchanges between A aind G would be permitted.

I If one uses Lagrange multipliers, then one must solve the (n1+p)x(n+p)

system of equations.

TT 1

where X is the vector of Lagrange multipliers. Since c (A A) A b-(ATA). G

-G(A T A) -1 G Gz-h

where

T -1T
z z=(A A) A b

-Note z is the least squares solution of the original problem without

constraints and one would frequently wish to compare this vector with the

final solutirn The vector z , of course.. should be computed by the

orthogonalization procedures discussed earlier.

Since ATA =RTR , G(A TA)-1GT-WTW where W = R-G After W is

c~omputed, it should be reduced to a pxp upper triangular matrix K by

orthogonalization. The matrix equation

K TK% = Gz-h

should be solved by the obvious method. Finally, one computes

=z-(A TA)- lT X

(A A) G X, can be easily computed by using R

-~ It is also possible to use the techniques described in V7. Again,

le*. r =b-Ak so that from (3.l)

I A 0 rb

0] = (8.2)

La G [i [?
18



[ or
Dz =g

F Note D is an (m+n+p)x(m+n+p) matrix. We may simplify the solution

of (8.2), however, by noting that

F 1o r 0o01 K 0
F L .j A J-4i- K .BJ (8.3)

-T 
T .

L

F where B = (GR ) PS and P P = I with S : . The decomposition

(3.3) can be used very effectively in conjunction with the method of iteratir

refinement. BJARCK and GOLUB [1967] have given a variant of the above

.procedure which requires Q and P

9. Linear least squares solutions with inequality constraints

Again let A,G be given real matrices of orders mxn , pxn , with

vr' > n , and let b , h be given real vectors of orders m , p . For any

vector x we define

r = b-Ax

and we wish to determine an x such that

T
r r min.

V zubject to

Gx > h

OOur problem can therefore be stated as follows: find r , x , w such that

Sr+Ax =b

SOx- w h

w >

Tr r mrin.
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These problems can be solved by quadratic programming but we present

an algorithm in this section which may lead to a much smaller system of

equations and which yields highly accurate resuilts.

If we define
1 T T(+ Tb

"f(r,w,x,y,z) = T - yT(r+Ax-b) - zr(Gx-w-h)

where we require without loss of generality that z > 9 , then an equivalent

problem is to determine r,w,x,y,z such that

w'z > 9

and

f is stationary.

Equating to zero the partial derivatives of f with respect to r,x,y,z

respectively, we get

r-y =y

-AT y G GTz =
T T

r + Ax - b =

Gx-w-h=@ .

Furt.er, let- the elements of w,z be wizi (i = 1,2,...,p) . Then

6f

OJw. 11

.cw if w. > 0 in the optimal solution, the constraint w. > 0 is not1

Si2ndln- and we have

6f

- = 0 ,P

1

i.e.,

w. > 0 => z. = 01 1

• Sinee z. > 0 , this further means that
12

.1
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z >o0 => . =

(For otherwise, z > 0 => w. > 0 => z. = 0 which is a contradiction.)

Accordingly, our problem has become one of finding a solution of the

system

r + Ax b(9.])F T T

ATr + GTz (9.2)

Gx -w=h (9.1)

r such that

T
z>Q , W> , zw=O

We now determine an orthogonal matrix Q and an upper-triangular

matrix R such that

A=QR

where R is lxn and non-singular if rank(A) = n . Then

TA =RQQR = RTR

Letting B = (GR- )T and eliminating r from (9.1) and (9.2) it is easily

E verified that

Sx = + R_1 Bz , (9.4)

wh:ere

[ = IAb

is the unconstrained least squares solution (i.e., the solution of (9.1) and

(9.2) with z = ). • is found by the methods of §7.

We now determine if x satisfies the original inequalities: if we

define q = GR-h and find that q > 9 then the constraints are satisfied

and x: solves the problem.

Otherwise, we substitute (9.4) in (9.3) and obtain

2!2



G(3 + R-z) - w - h

or

BTBz + q = w

where we further require (9.5)

z>Q , w>_ z =

Thus we find that z, w solve the linear complementarity problem (L:P)

defined by (9.5). This is a fundamental mathematical programming problem

and several algorithms have been developed for finding solutions (e.g. see

IgITE [1968], COTTLE [1968], COTTLE and DANTZIG [1968]). The matrix M = BT B

is positive semi-definite, and this is one of the cases when, for example,

the principal pivoting method in COTTLE [1968] guarantees tcrmination with

a solution, or with an indication that none exists.

Once z has been found it would be a simple matter to substitute

into (9.1), (9.2) and find r,x from

r + Ax=b (- ~ -(9.6)
AT r -GTz

In practice, however, if we are -oncerned with the accuracy of our estimate

of x we use the solution of the LCP (9.5) only to determine which elements

of w are exactly zero. These are the w. which are non-basic in the-- 1

solution of (9.5). (There is certainly at least one such w. , for1

otherwise we would have z = 9 , w > 9 , which is the case checked for

earlier in determining whether or not c solved the problem.)

We now delete from (9.3) those constraints for which wi is basic,

obtaining an lxn system of equations

Gx =h

1 where 1 < < p.

If z is the vector z with the corresponding elements deleted, the

remaining step is to solve the system

22



r r+Ax =b

Ar = (97)

I. Gx

where we are now working with original daia and can therefore expect a

more accurate solution than could be obtained from (9.6). We can now apply

the methods of §8 to this system of equa'ions.

The standard methods for solving the linear complementarity problem

Enploy the elements of w as the initial set of basic variables, with all

elements of z initially non-basic. in general, it is probable tha; only

a small proportion of the inequalities in the original problem will be

constraining the system, which means that only a small prcportion of the w.

will be non-zero. Hence it might be expected in general that only a small

number of iterations (relative to p ) should be required to bring some of'

the z. into the basis and reach a feasible solution.

In our particular form of' the problem, since the matrix M = l B

has its largest e±t_.:ents on the diagonal, accuracy can be conserved, to
within the limits of the error in forming M , by interchanging rows

whenever a column of M is brought into the basis in such a way that the

L diagonal elements of M become diagonal elements of the basis matrix.

This is easily done if the LU decomposition of the basis is calculated

each iteration as in the treatment of the simplex method by BARTELS [1968]

and BARTELS and GOLUB [1969].

SNote that B = (GR-I)T can be detemnined column by column via

reoeated back-substitution on the system

T T

The algorithm presented here can be used for any quadratic programming

problem when a positive definite quadratic form is given. Suppose we wish

to determinp an x such thatT - T
xTcx + dTx =min. . . . . (9.8)

subject to Gx > 1h

2[



"Since C is positive definite, we may write

T
=R

where R(•) is the Cholesky factor of C Such a decomposition can

o esily be computed. If we now define b = - • R-d (and calculate b

_from Pb = -b d ) we find that

!b Rxii0  b b b-2b Rx +x RRx

-b + dTx + xTcx

-A consequently if we deermine an x such that

'11b - Rxi', = min.

z-bject to Gx > h

I :.ern x will satisfy (9.8) as required.

t
10. Singular systems

If the rank of A is less than n and if column interchanges are

i .-er:'ormed to maximize the diagonal elements of R , then

(r+l)-, L Rrxr (n-r)xr

! L 0
wlen rtnk(A) = r . A sequence of Householder transformations may now be

I omrir ed on the right of A~r+l) so that the elements of Sn become

noihilated. Thus dropping subscripts and superscripts, we have

;:hrr,• T is an rxr upper triangular matrix. Now

I
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[1b - Axii 2 = 1lb - QT T ZTXII

= 11c -TyI! 2

where c = Qb and y = zTx , Since T is of rank r , there is no unique

solution so that we impose the condition that VxI!, = min. But jylll =
since Z is orthogonal, and 1y112  mfin. when

Yr+= Yr+2 m = 0

z -= Qb

0 0

SThis solution has been given by FADEEV, et. al. [1968] and HANSON and

!AWSON [19681. There still remains the problem of determining the rank

Ir numerically, and this will be discussed in §12.

il. Singular ialue decomposition

Let A be a real, mxn matrix (for notational convenience we assume

that m > n ). It is well known (cf. iANCZOS [1951]) that

A UvT (11.1)

[ where
w eeU• = I , •VT = I

~'m nT

[ and

The matrix U consists of the orthonormalized eigenvectors of AAT and

the matrix V consists of the orthonormalized eigenv3ctors of ATA . The
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diaicnal elements of Z are the non-negative sqTIar- roots of the eifenvalues
T
A A ; they are called singular values or principal values o- A We

aosune

_> G2 > -> 0

I.s if rank(A) = r , r,- = r+D .... jn = C The decomposition

;11.1) is called the singular value decom2csition (SVD).

Let 0 A
= (11.2)

NT 0

cx. te sh.own that the non-zero eigenv-ilues of A always occur in +

7, irs, viz.

- + •.(A) i = l,2,...,r) (j

"12. Applications of the SVD

The sinýular value decomrrposition plays an important role in a number

s squares prol lems, and we will illustrate this with some examples.

T-rvw..out this discusslun, we use the Euclidean or Frobenius norm of a

, - li•l = (Zla.:ji. /

"* c* P L! .he set of all nxn orthogonal matrices. For an arbitrary

nX. ren] matrix A , determine QcU such that

-A-QHI IIA-XHj ror any Xcun

uoen shown by FAN and HOFFNAN [1955] that if

T
A =UV' , then Q =1T.

I
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F 3) An important generalization of probler.. A occurs in factor analysis.[ For arbitrary nxn real matrices A and B , determine QEUn such that

I[A-BQII < IIA-BXII for any XcU

SIt has been shown by GREEN [1952] and by SCHbThEMANN [1966] that if

SBTA = U2VT , then Q = UV

C) Let (k) be the set of all mxn matrices of rank k . Assume

(r) n (k)
A ')nn Determine Bo 7 ,n (k < r) such that

JlA-Bjý < JA-Xjj for all X (k)

It has been shown by ECKART and YOUNG [19361 that if

A = UV , then B = UQVT (12.1)

where

01 002

Q . (12.2)

0
I...

. ote that

IIA-BII = tIZ-0kl = (2+i + + ar2)1/2 (12.)

D B) An nxm matrix X is said to be the pseudo-inverse of an mxn

mxatrix A if' X satisfies the following four properties:

27
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i) AXA =-A

ii) XAX = X

iii) •Ax)T= AY

iv) (XA)T = XA

'c denote the pseudo-inverse by A We wish to determine A+ numerically.

I' can be shown (of. PENROSE [1955]) that A+ can always be determined and

is unique. It is easy to verify that

A VAUT (12. 4)

where

1

1

02

Ao
0.

r

nxn

i recent years there have been a number of algorithms proposed for

computin: the pseudo-inverse of a matrix. These algorithms usually depend

- - upon a knowledge of the rank of the matrix or upon some suitably chosen

.aram:ter. For example in the latter case, if one uses (12.4) to compute

the pseudo-inverse, then after one has computed the singular value

d-'-cnpositicn numerically it is necessary to determine which of the singular

" ars cr zerc by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as

SI A = B+SB

wLer -,P is a matrix of perturbations and

fltBII n
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Now, we wish to construct a matrix B such that

and

rank (B) = minimum

This can be ac implished with the aid of the solution to problem (C). Let

Bk = U•k

where Qk is defined as in (12.2). Then using (!2.3),

B
p

if

2 +a 2  2)1/2 <
p+l p+2 n

and

(a a2  + . 2)/2 >
p p+l n

Since rank(B) = p by construction,

i+ = V+UT .
p

Thus, we take NF as our approximation to A+

E) Let A be a given matrix, and b be a known vector. Determine 3~

so that amongst all x for which flb-Ax 2 = ma , ~ min. It is easy

to verify that

i" S=A+b

[ 13. Calculation of the SVD

It was shown by GOLUB and KAHAN [1965] that it is possible to construct
a sequence of orthogonal matrices

29



(k) Q(k) r-1

Sk.,] l k=l

via Householder transformation so that

p(n)p(n-1)...p(l)AQ(lQ (2) ... Q(n-1) pTAQ J

and J is an mxn bi-diagonal matrix of the form

0

2n- i2

n

The singular values of J are the same as those of A . Thus if the

singular value decomposition of

J= XZyT

then

A -- pyyTQT

F- that

U=PX , =QT

:01UB [1968) has given an algorithm for computing the SVD of J ; the

:,]Xoritha is based on the highly effective QR algorithm of FRANCIS [1961, 1962)

for computing the eigenvalues.

It is niot necessary to compute the complete SVD when a vector b is

,iven. Since x = V+UTb , it is only necessary to compute VI and' UTb

:•c•,, this has n strong flavor of principal component analysis. An ALGOL

procedure for the SVD has beeen given by GOLUB and REINSCH [1969).
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14. ,uadrat.c constraints

We wish to determine 3: so that

jjb-Aý:12 = min.

when

11k11l2 ="C

Such problems occur in a number of situations, e.g. in the numerical solutioc:

c' integral equations of the first kind (of. PHILLIPS [1962]), and in the

solution of non-linear least squares problems (cf. MARQUARDT [19631).

IUsing Lagrange multipliers, we are led to the equation

(ATA-X*I), = ATb

wu:ere the real constant X* is determined as the smallest root of
2 T T -2T

Q-o2b A(A A-kI) ATb = 0 (14.1)

Uszin the decomposition A = TJEV and c = UTb equation (14.1) becomes

2 -eTZ2 -XI)-2 = 0

A combination of bisection and Newton iteration may be used to determine X*
2

i1 iZ Cas'y shown that X* j - (cf. FORSYTHE and GOLUB [19651).m-n
It is also possible to determine X* as a solution to an eigenvaluc

larcl~rm using a technique given by FORSYTHE and GOLUB [19651. Consider the

, -cr;i,

Lz j I = (x) det (w-ZX- y)

;'jch is valid l'or any partitioned matrix with X and W square and

rlde,(X) • 0 . Thc:s (14.1) is equivalent to the determinantal equation

(A TA-X) 2  ATb,.det~ ! bA 2j o
det T 2 0

b bA
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JiNow thcre exists a vector p an,'! a niter q su'h that

I(ATA-XI)2p + ATbq b T Ap + 2q 0

A simple elimination shows that X* must satisfy the determinantal equation

det[ (ATA-U)• - -2 A~bbA] = 0 (14.2)

It- is possible to transform (i4..2) into a 2nx2n ordinary eigenvalue
iprrc z.Iem.

Once ;* is determined, tle sci<' ion x can be computed from the

-VD of A . Thus,

I
'I

!

I
SI

I!,
I
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